
Jennic Encryption Tool (JET)
User Guide

JN-UG-3081

Revision 1.4

18 April 2013

Jennic Encryption Tool (JET)
User Guide

2 © NXP Laboratories UK 2013 JN-UG-3081 v1.4

 Jennic Encryption Tool (JET)
User Guide
Contents

About this Manual 5
Organisation 5

Conventions 5

Acronyms and Abbreviations 6

Related Documents 6

Trademarks 6

1. An Introduction to JET 7
1.1 Purpose of JET 8

1.2 Modes of Operation 8
1.2.1 Binary Encryption Mode 9

1.2.2 Serialisation Data Encryption Mode (JN514x only) 9

1.2.3 Combine Mode 10

1.2.4 Combined Encryption Mode (JN514x only) 10

1.2.5 OTA Merge Mode 11

1.3 Use Cases of JET 12
1.3.1 Use Case 1: Single App with SD - Unencrypted 12

1.3.2 Use Case 2: Single App with Blank SD - Encrypted 13

1.3.3 Use Case 3: Multiple Apps with SD - Unencrypted 14

1.3.4 Use Case 4: Single App with SD - Encrypted 15

1.3.5 Use Case 5: Multiple Apps with SD - Encrypted 16

1.4 Serialisation Data 17

2. Preparing an Application for JET 19
2.1 Adapting the Makefile 19

2.2 Adapting the Application Code 20
2.2.1 Serialisation Data 20

2.2.2 Overlays with Multiple Images (ZigBee PRO, JN514x only) 21

2.3 Setting Up Serialisation Data File 21

3. Creating an Application Image 25
3.1 Using Binary Encryption Mode 26

3.2 Using Serialisation Data Encryption Mode
(JN514x only) 27

3.3 Using Combine Mode 28

3.4 Using Combined Encryption Mode (JN514x only) 29

3.5 Using OTA Merge Mode 30

3.6 OTA Options 35
JN-UG-3081 v1.4 © NXP Laboratories UK 2013 3

Contents
4. Loading an Application Image 37
4.1 Flash Programming Tools/Devices 37

4.2 Programming the Flash Device 38
4.2.1 Setting Up the Serialisation Data 38

4.2.2 Writing to the Flash Device 38

Appendices 41

A. Licence File Format (JN514x only) 41

B. Use Cases 42
B.1 Use Case 1: Single App with SD - Unencrypted 42
B.2 Use Case 2: Single App with Blank SD - Encrypted 42
B.3 Use Case 4: Single App with SD - Encrypted 42
B.4 Use Case 5: Multiple Apps with SD - Encrypted 43
B.5 Use Cases 6-9: Adding OTA Header to an App Binary 43

C. Creating a NULL OTA Image 44
C.1 Creating an Unsigned NULL Image 44
C.2 Creating a Signed NULL Image 45

D. AP-114 Installation 46
D.1 Installing the ApPC Software 46
D.2 Installing the Device Drivers 47
D.3 AP-114 to JN514x Connection 47
4 © NXP Laboratories UK 2013 JN-UG-3081 v1.4

 Jennic Encryption Tool (JET)
User Guide
About this Manual

This manual describes the operation of the Jennic Encryption Tool (JET) which can be
used to produce encrypted and/or merged binary image files to be programmed into a
Flash memory device (internal or external) for use with an NXP JN51xx
microcontroller. The tool is included in the JN516x SDKs and is also provided in a
JN514x ZIP file, JN-SW-4052-JET.zip, available on request from NXP Support.

Organisation

This manual consists of 4 chapters and 4 appendices, as follows:

 Chapter 1 introduces JET and its modes of operation

 Chapter 2 describes how to prepare files for input into JET

 Chapter 3 details the operational modes of JET

 Chapter 4 describes how to load binary images produced by JET into a Flash
memory device

 The Appendices provide details of the encrypted licence file produced by JET, a
number of use cases of JET, how to create a NULL OTA image and installation
instructions for the Atomic Programming AP-114 device

Conventions

Files, folders, functions and parameter types are represented in bold type.

Function parameters are represented in italics type.

Code fragments are represented in the Courier New typeface.

This is a Tip. It indicates useful or practical information.

This is a Note. It highlights important additional
information.

This is a Caution. It warns of situations that may result
in equipment malfunction or damage.
JN-UG-3081 v1.4 © NXP Laboratories UK 2013 5

About this Manual
Acronyms and Abbreviations

API Application Programming Interface

CA Certificate Authority

JET Jennic Encryption Tool

OTA Over-the-Air

PCB Printed Circuit Board

SDK Software Developer’s Kit

SE Smart Energy

SPI Serial Peripheral Interface

SSB Second-Stage Bootloader

ZLL ZigBee Light Link

Related Documents

JN-UG-3077 ZigBee Cluster Library User Guide

JN-UG-3059 ZigBee PRO Smart Energy API User Guide

JN-UG-3091 ZigBee Light Link User Guide

JN-UG-3007 JN51xx Flash Programmer User Guide

Trademarks

All trademarks are the property of their respective owners.
6 © NXP Laboratories UK 2013 JN-UG-3081 v1.4

 Jennic Encryption Tool (JET)
User Guide
1. An Introduction to JET

The Jennic Encryption Tool (JET) is a command-line utility which provides a means of
preparing binary files for programming into the Flash memory device associated with
an NXP JN51xx wireless microcontroller.

The tool is provided as an executable file, JET.exe.

In the case of the JN516x family, this executable file is included in the JN516x
Software Developer’s Kit (SDK) at the following location:

<JN51xx_SDK_ROOT>/Tools/OTAUtils/

where <JN51xx_SDK_ROOT> is the directory in which the SDK is installed.

In the case of the JN514x family, the executable file is supplied in the ZIP file
JN-SW-4052-JET.zip, which is available on request from NXP Support. The ZIP file
should be extracted to the <JN51xx_SDK_ROOT> directory.

The executable can then be launched from the above ‘OTAUtils’ file path.

Unencrypted binary images produced by JET can be loaded into Flash memory using
the JN51xx Flash Programmer or a third party device such as the Atomic Programmer
(AP-114) device. The JN51xx Flash Programmer always programs the Flash memory
from offset zero, whereas the third party tool can program the Flash memory from any
offset.

Note: JET is only needed to prepare a binary image that
requires certain pre-processing (encryption or merger)
before being loaded into Flash memory. Single
unencrypted images can usually be programmed into
Flash memory directly (without JET).
JN-UG-3081 v1.4 © NXP Laboratories UK 2013 7

Chapter 1
An Introduction to JET

1.1 Purpose of JET

JET can be used to perform the following operations on a binary image:

 To encrypt a binary file before it is stored in Flash memory on a device - this
secures the application (and associated data), which is particularly
recommended for ZigBee PRO Smart Energy

 To combine two or more binary files (either encrypted or unencrypted) into a
single binary image - this facility is used for ZigBee Over-the-Air (OTA)
Upgrade, which may involve the programming of a single image containing
more than one software component

 To populate an application’s blank serialisation data with production information

 To generate an OTA upgrade image (signed or unsigned)

The above features of JET are described in more detail in Section 1.2, which outlines
the available operational modes of the tool.

1.2 Modes of Operation

JET offers five modes of operation:

 Binary Encryption mode, described in Section 1.2.1

 Serialisation Data Encryption mode, described in Section 1.2.2

 Combine mode, described in Section 1.2.3

 Combined Encryption mode, described in Section 1.2.4

 OTA Merge mode, described in Section 1.2.5

Note: For more information on ZigBee OTA Upgrade,
refer to the chapter on this cluster in the ZigBee Cluster
Library User Guide (JN-UG-3077), which is available
from www.nxp.com/jennic.
8 © NXP Laboratories UK 2013 JN-UG-3081 v1.4

 Jennic Encryption Tool (JET)
User Guide
1.2.1 Binary Encryption Mode

In Binary Encryption mode, JET takes an application binary file as input and produces
an encrypted binary file as output. The input file is a normal application binary file built
for the JN51xx device in Eclipse or from the command line.

In this mode, the user is required to provide:

 unencrypted binary application file

 name of the encrypted output file

 encryption key

 initialisation vector

The encryption key is stored in either the index sector or eFuse (JN516x or JN514x
respectively) from where it is retrieved during decryption. The key comprises of four
32-bit words, which are stored in Little Endian format.

The use of JET in Binary Encryption mode is detailed in Section 3.1.

1.2.2 Serialisation Data Encryption Mode (JN514x only)

ZigBee Smart Energy security requires certain ‘serialisation data’ to accompany an
encrypted application image and this data should also be encrypted. Serialisation data
comprises an IEEE/MAC address and security-related data - see Section 1.4.

In Serialisation Data Encryption mode, JET takes a configuration file (containing the
serialisation data) as an input, as detailed in Section 2.3, and produces an encrypted
licence file as its output, as described in Appendix A. This output file contains the
encrypted serialisation data.

In this mode, the user is required to provide:

 application binary file

 configuration file (or ‘serialisation data file’)

 encryption key

 initialisation vector

The encryption key is as used in Binary Encryption mode (see Section 1.2.1).

The use of JET in Serialisation Data Encryption mode is detailed in Section 3.2.

Note 1: The serialisation data may include the IEEE/
MAC address of the device that will run the application.
If this address is not stored in eFuse on the host device,
it will be necessary to include it in the serialisation data
for the encrypted application, irrespective of the
application area (Smart Energy or any other).

Note 2: This mode is not for use with JN516x devices
as they only require the private key to be encrypted.
JN-UG-3081 v1.4 © NXP Laboratories UK 2013 9

Chapter 1
An Introduction to JET

1.2.3 Combine Mode

In Combine mode, JET takes an application binary file and a configuration file
(containing serialisation data) as inputs, and produces a binary file as its output which
incorporates the serialisation data. The input file is an unencrypted application image
file built for the JN51xx device in Eclipse or from the command line, and the
configuration file is as detailed in Section 2.3.

The use of JET in Combine mode is detailed in Section 3.3.

1.2.4 Combined Encryption Mode (JN514x only)

Combined Encryption mode combines Binary Encryption mode (see Section 1.2.1)
and Serialisation Data Encryption mode (see Section 1.2.2) but generates a single
encrypted output file. Therefore, JET takes an application binary file and a
configuration file as inputs, and produces an encrypted binary file as output that
includes both the application and the serialisation data.

In this mode, the user is required to provide:

 unencrypted binary application file

 configuration file (or ‘serialisation data file’)

 name of the encrypted output file

 encryption key

 initialisation vector

The encryption key is as used in Binary Encryption mode (see Section 1.2.1).

The use of JET in Combined Encryption mode is detailed in Section 3.4.
10 © NXP Laboratories UK 2013 JN-UG-3081 v1.4

 Jennic Encryption Tool (JET)
User Guide
1.2.5 OTA Merge Mode

OTA Merge mode allows the creation of binary images for applications which support
the ZigBee OTA Upgrade cluster.

JN516x

This mode can be used to combine two client upgrade files to produce a single image
which can then be loaded into the external Flash memory of the server device. The
initial server image will be loaded into the internal Flash memory of the JN516x device.

JN514x

This mode can be used to combine OTA upgrade files to produce a new server image
by combining:

 initial server image

 upgrade client application

The above input files can be provided encrypted (as the result of another JET mode)
or unencrypted. Unencrypted inputs will result in an unencrypted output while
encrypted inputs will result in an encrypted output.

A client upgrade image must have an OTA header attached at the beginning of the
image. This image must also be put at the correct offset in Flash memory.

If the JN51xx Flash Programmer is used to load (unencrypted) binary images, the
programming must always start from the beginning of Flash memory. In this case, a
new client image which is to be loaded onto the server must first be combined with the
server application so that Flash memory can be completely re-written. Other Flash
programming tools, such as the Atomic Programming AP-114 device, may allow a
new client image (encrypted or unencrypted) to be written directly to the appropriate
offset in Flash memory on the server, without a merger and complete re-write.

An application image contains a 4–byte version number field at the start of the image,
which is not needed. The JN51xx Flash Programmer automatically strips out this field
but other Flash programming tools, such as the AP-114 device, do not. OTA Merge
mode provides an option to remove this field when using such tools.

The use of JET in OTA Merge mode is detailed in Section 3.5. Information on ZigBee
OTA Upgrade can be found in the ZigBee Cluster Library User Guide (JN-UG-3077).

Note: This mode is only likely to be used during
development to test the OTA upgrade functionality.
JN-UG-3081 v1.4 © NXP Laboratories UK 2013 11

Chapter 1
An Introduction to JET

1.3 Use Cases of JET

This section contains a collection of flow diagrams that illustrate ‘use cases’ for JET.
Often, it is necessary to use the tool in a succession of modes. The required JET
commands for the illustrated cases are detailed in Appendix B.

The scenarios that produce unencrypted outputs are likely to be use in a development
environment, while those that produce encrypted outputs are likely to be used in a
production environment.

Note that the following abbreviations are used in the flow diagrams:

 EncKey – Encryption Key

 SData or SD – Serialisation Data

 App1 - Application image 1

 App2 - Application image 2

1.3.1 Use Case 1: Single App with SD - Unencrypted

In this case, a single application binary is first combined with serialisation data using
Combine mode. The final (unencrypted) output file is written to Flash memory.

Figure 1: Single Application with SD - Unencrypted

Single Application Binary
– With Serialisation Data –

Unencrypted

Combine the SData with App1
(mode: combine)

Program the output binary into
Flash memory using the

Flash Programmer
12 © NXP Laboratories UK 2013 JN-UG-3081 v1.4

 Jennic Encryption Tool (JET)
User Guide
1.3.2 Use Case 2: Single App with Blank SD - Encrypted

In this case, a single application binary with no serialisation data is encrypted using
Binary Encryption mode and merged with blank serialisation data using combine
mode. The encrypted output file is written to Flash memory.

Note: Since there is no serialisation data, the space
reserved for this data in the application image is left
blank (all Fs).

Figure 2: Single Application with Blank SD - Encrypted

Encrypt App1 with EncKey
(mode: bin)

Single Application Binary
– Blank Serialisation Data –

Encrypted
e.g. OTA Client Application

Program the Encrypted App1
into the relevant
sector of Flash

This image is likely to be
transferred to the JN51xx
via a peripheral interface

during run-time

Merge Blank Serialisation
Data with encrypted image

(mode: combine)
JN-UG-3081 v1.4 © NXP Laboratories UK 2013 13

Chapter 1
An Introduction to JET

1.3.3 Use Case 3: Multiple Apps with SD - Unencrypted

In this case, an application binary (App1) is first combined with serialisation data using
Combine mode. The result is then merged with another application binary (App2)
using OTA Merge mode. In the case of a JN516x device, the merging of App1 with
another application is not required as the second application will be stored in external
Flash memory. The final (unencrypted) output file is written to Flash memory.

Figure 3: Multiple Applications with SD - Unencrypted [JN5148-Z01 Example]

Multiple Application Binaries
– With Serialisation Data –

Unencrypted

Combine the SData with App1
(mode: combine)

Merge the combined output
with App2

(mode: otamerge)

Program the merged output
binary into Flash memory

using the Flash Programmer
14 © NXP Laboratories UK 2013 JN-UG-3081 v1.4

 Jennic Encryption Tool (JET)
User Guide
1.3.4 Use Case 4: Single App with SD - Encrypted

In this case:

 A single application binary is encrypted using Binary Encryption mode

 The serialisation data is encrypted using Serialisation Data Encryption mode

The encrypted output files are written to Flash memory separately via a third-party
Flash programmer (e.g. Atomic Programming AP-114).

Figure 4: Single OTA Server App with SD - Encrypted [JN5148-Z01 Example]

Single Application Binary
– With Serialisation Data –

Encrypted
e.g. OTA Server Application

Generate and encrypt
SData file with EncKey

(mode: sde)

Encrypt App1 with EncKey
(mode: bin)

Can be combined into
a single operation but not

practical for mass
production

(mode: com)

Program the Encrypted SData
into Sector 0 of Flash memory

Program the Encrypted App1
into Sector 0 of Flash memory

A third-party programmer
(e.g. Atomic Programmer)
is needed to write these

binaries directly to
Flash memory
JN-UG-3081 v1.4 © NXP Laboratories UK 2013 15

Chapter 1
An Introduction to JET

1.3.5 Use Case 5: Multiple Apps with SD - Encrypted

In this case:

 Multiple application binaries (two in this example) are encrypted separately
using Binary Encryption mode

 The serialisation data is encrypted using Serialisation Data Encryption mode

The encrypted output files are written to Flash memory separately via a third-party
Flash programmer (e.g. Atomic Programming AP-114).

Figure 5: Multiple Apps with SD - Encrypted [JN5148-Z01 Example]

Multiple Application Binaries
– With Serialisation Data –

Encrypted
e.g. App1 = OTA server image, App2 = OTA client image

Generate and encrypt
a SData file with EncKey

(mode: sde)

Encrypt App1 with EncKey
(mode: bin)

Can be combined into
a single operation but not

practical for mass
production

(mode: com)

Program the Encrypted SData
into Sector 0 of Flash memory

Program the Encrypted App1
into Sector 0 of Flash memory

A third-party programmer
(e.g. Atomic Programmer)
is needed to write these

binaries directly to
Flash memory

Encrypt App2 with EncKey
(mode: bin)

Program the Encrypted App2
into either Sector 3 or 4 of

Flash (depending on the size
of the images)
16 © NXP Laboratories UK 2013 JN-UG-3081 v1.4

 Jennic Encryption Tool (JET)
User Guide
1.4 Serialisation Data

An application may require information which allows it to identify and authenticate the
host device on which the application is intended to be run - this is particularly the case
for a ZigBee Smart Energy (SE) application which requires a high level of security.
This information is called ‘serialisation data’ and it must reside in the Flash memory of
the host device along with the application binary. It must also be encrypted for JN514x
devices, whereas JN516x devices only require the private key to be encrypted.

The serialisation data contains the following information:

This information is unique for each JN51xx device and is provided as follows:

 IEEE/MAC address: This 64-bit address is provided by NXP.

 Pre-configured link key: This 128-bit key is derived (using an algorithm) from
an installation code consisting of a random sequence of hexadecimal values.
The installation code is printed on a label for the device during manufacture.
The derived key is also stored in Flash memory for the device. The key must be
derived again from the installation code in the same way in order to be included
in the serialisation data.

 Security certificate: This is obtained from a Certificate Authority (CA) such as
Certicom by submitting the IEEE/MAC address of the device. The certificate
includes this address as well public keys for the device and the CA.

 Private key: This is obtained from the CA along with the security certificate.

Further details of the above security certificate and keys can be found in the ZigBee
PRO Smart Energy API User Guide (JN-UG-3059).

JN516x

For JN516x devices, only the private key must be encrypted using the device’s index
sector key. JET provides an option in Combine mode for encrypting the private key.

Preparing the serialisation data for input to JET is described in Section 2.3.

JN514x

For JN514x devices, the serialisation data must be encrypted using the key stored in
eFuse on the device, so that it can be correctly decrypted. JET provides a special
mode for encrypting this data - Serialisation Data Encryption mode (see Section
1.2.2), which outputs the encrypted serialisation data in a dedicated licence file.
However, Combined Encryption mode (see Section 1.2.4) also includes the encryption

Data Component Size (bytes) Domain

IEEE/MAC address (if not programmed into eFuse) 8 Device

Pre-configured link key (derived from an installation code) 16 SE-specific

Security certificate (from Certificate Authority such as Certicom) 48 SE-specific

Private key (associated with security certificate) 21 SE-specific

Table 1: Serialisation Data
JN-UG-3081 v1.4 © NXP Laboratories UK 2013 17

Chapter 1
An Introduction to JET

of serialisation data, which is output as part of a binary image that also contains the
application.

Preparing the serialisation data for input to JET is described in Section 2.3.
18 © NXP Laboratories UK 2013 JN-UG-3081 v1.4

 Jennic Encryption Tool (JET)
User Guide
2. Preparing an Application for JET

In order to use JET to encrypt a binary application and/or merge binary files, you must
prepare the application and its associated files for input into JET:

 Adapt the makefile for the application, as described in Section 2.1

 Adapt the application code itself, as described in Section 2.2

 Prepare a serialisation data file (if required), as described in Section 2.3

2.1 Adapting the Makefile

The makefile for your application needs to reserve locations in RAM or Flash memory
(JN514x or JN516x respectively) where the OTA header and security certificate/keys
(if required) will be stored. To do this, add the following tags for each $(OBJCOPY)in
the makefile:

-j .ro_mac_address -j .ro_ota_header -j .ro_se_lnkKey -j
.ro_se_cert -j .ro_se_pvKey

where:

 -j .ro_mac_address refers to the device’s MAC address (JN516x only).

 -j .ro_ota_header refers to the OTA header and is only required when
using the ZigBee OTA Upgrade cluster.

 The remaining tags relate to the serialisation data required for encryption (see
Section 1.4) and have the following meanings:

 -j .ro_se_lnkKey refers to the pre-configured link key

 -j .ro_se_cert refers to the security certificate

 -j .ro_se_pvKey refers to the private key associated with the certificate

These three tags are primarily needed for Smart Energy applications - for more
information on Smart Energy security, refer to the ZigBee PRO Smart Energy
API User Guide (JN-UG-3059).

JN516x

If required, these tags should be added after -j .vsr_handlers and before
-j .rodata.

JN514x

If required, these tags should be added after -j .rtc_clt and before -j .rodata.
JN-UG-3081 v1.4 © NXP Laboratories UK 2013 19

Chapter 2
Preparing an Application for JET

2.2 Adapting the Application Code

This section describes the adaptations to application code that are needed to use
security-related serialisation data (on any device) and to use overlays with multiple
ZigBee PRO application images.

2.2.1 Serialisation Data

The makefile updates described in Section 2.1 ensure that the security-related
serialisation data place-holders will be included within the application image. These
place-holders will be populated either during production programming or by JET when
used in Combine mode. In order for the application to access these place-holders, the
following must be defined within the code:

PUBLIC uint32 au32SeZcertificate[48] __attribute__ ((section
(".ro_se_cert")));

uint8* au8Certificate = (uint8*)au32SeZcertificate;

PUBLIC uint32 au32SePrvKey[21] __attribute__ ((section
(".ro_se_pvKey")));

uint8* au8PrivateKey = (uint8*)au32SePrvKey;

PUBLIC uint8 au8LnkKeyArray[16] __attribute__ ((section
(".ro_se_lnkKey")));

The elements of the above arrays must be set to 0xFF, to allow the production
programming of serialisation data. Alternatively, to aid application development, the
0xFF values can be replaced with hardcoded serialisation data. For an example of
this, refer to any of the app_certificates.h files in the Smart Energy HAN Solutions
Application Note (JN-AN-1135).

JN516x

The following is also required for JN516x devices:

PUBLIC uint8 au8DeviceMacAddress[8] __attribute__ ((section
(".ro_mac_address")))

The above MAC address container can be over-ridden in the application by calling the
following API:

ZPS_vSetOverrideLocalMacAddress(au8DeviceMacAddress);
20 © NXP Laboratories UK 2013 JN-UG-3081 v1.4

 Jennic Encryption Tool (JET)
User Guide
2.2.2 Overlays with Multiple Images (ZigBee PRO, JN514x only)

If overlays are enabled in multiple ZigBee PRO application images, the following code
must be included in each application.

 Declare the variable u16ImageStartSector as a uint16 ‘extern’ - for example, in
app_start.c of a standard NXP Application Note, define:

extern uint16 u16ImageStartSector;

This variable contains the number of the start sector in Flash memory of the
space for the first image (note that it assumes a 32-Kbyte sector size and so, for
example, if 64-Kbyte sectors are used, its value will be twice the actual start-
sector value).

 During overlay initialisation, add the following line:

sInitData.u32ImageOffset = u16ImageStartSector * 0x8000;

(if sInitData.u32ImageOffset = 0; is already be present, it should be
replaced)

2.3 Setting Up Serialisation Data File

Serialisation data is required for a ZigBee PRO Smart Energy (SE) application which
is to use SE security and for any application in which the IEEE/MAC address of the
host device(s) must be encoded (for example, if this address is not available in eFuse
on the device). For an introduction to serialisation data, refer to Section 1.4.

The serialisation data for a device consists of up to four components (the last three
components will be required only if security is to be implemented):

 IEEE/MAC address

 Security certificate

 Private key (associated with certificate)

 Pre-configured link key

This data is obtained and assembled as described below. Ultimately, JET must
reference the data for all relevant devices through a single configuration file.

Step 1 Produce a file containing the IEEE/MAC address(es) for the host device(s)

The 64-bit IEEE/MAC addresses for all the devices on which the application is to run
should be listed in a text file called mac.txt. This file contains one IEEE/MAC address
per line, as illustrated below:

00158d0000000001

00158d0000000002

00158d0000000003

If the security components of the serialisation data are required, continue to the next
step, otherwise go to Step 4.
JN-UG-3081 v1.4 © NXP Laboratories UK 2013 21

Chapter 2
Preparing an Application for JET

Step 2 Obtain the security certificate(s) and associated private key(s) from Certicom

Submit the mac.txt file to a Certificate Authority (CA), such as Certicom
(www.certicom.com), to request a security certificate and associated private key for
each device with a listed address.

Certicom will return two text files, each containing the relevant data values for the
devices, listed in the same device order as in the mac.txt file:

 cert.txt, which lists the security certificates, one certificate per line - for
example:

0207b2e0472c4bf90c0bacc25436547815fd7702cbfa0022080c9df367ed5445
535453454341c327a4e617f82378ec98

02068c968f6dfc191ff646881918f364ba4ef5e52769304367e78348fc455445
535453454341348f56c2374945bc9290

020363366ca613ffa9249990d7a454829fe0d9b2e874921bc71b32f56c235445
53545345434174865191c2dc72e3dd37

030785a63508b65d6d66cd7e098f27da653d70b13f7773da29260a2ce93d5445
53545345434123d649ca123f46e5732d

 key.txt, which lists the associated private keys, one key per line - for example:

02b08cd381b00593a6b3e1ab04a5a7ddd0a9f0834

02b9475dc6346089d5d3c278ac83544b7a5bfa97de

009c399b93536f1855a65b7b786f56fe75be52943e

012d7c171cb5973e38586cf31efc9eace2f0d58d7a

Step 3 Produce a file containing the pre-configured link key(s) for the host device(s)

For each host device, generate the 128-bit pre-configured link key from the installation
code for the device. The installation code consists of 12, 16, 24 or 32 random hex
digits (followed by a 4-digit checksum of the random digits) and is printed on a label
distributed with the device. The link key is pre-programmed into Flash memory for the
device during manufacture and you must use the same algorithm as used by the
manufacturer to derive the link key from the installation code.

List the link keys for the host devices in a text file called link.txt, with one key per line
and listed in the same device order as in the mac.txt file, as illustrated below:

00112233445566778899aabbccddeeff

10112233445566778899aabbccddeeff

20112233445566778899aabbccddeeff

Step 4 Produce a configuration file which references the serialisation data file(s)

Create a text file which collects together all the serialisation data for the application by
referencing the above files. This ‘configuration file’ will act as an input to JET.

The configuration file must list the serialisation data files and for each, give the
address of the start location in Flash memory where its data will be stored and the
length of the data (in bytes). The file can be named as desired (e.g. config.txt).

The exact contents of the configuration file depend on the target device type,
examples are provided below:
22 © NXP Laboratories UK 2013 JN-UG-3081 v1.4

 Jennic Encryption Tool (JET)
User Guide
For JN5148-Z01:

MACaddr.txt,0014,8

LinkKey.txt,00bc,16

ZigbeeCert.txt,00cc,48

PrivateKey.txt,00fc,21

For JN516x without OTA Upgrade Cluster:

MACaddr.txt,0044,8

LinkKey.txt,0054,16

ZigbeeCert.txt,0064,48

PrivateKey.txt,0094,21

For JN516x with OTA Upgrade Cluster:

MACaddr.txt,0044,8

LinkKey.txt,00a4,16

ZigbeeCert.txt,00b4,48

PrivateKey.txt,00e4,21

Note: If security is not to be implemented, the
configuration file need only contain details of the
IEEE/MAC address file.
JN-UG-3081 v1.4 © NXP Laboratories UK 2013 23

Chapter 2
Preparing an Application for JET

24 © NXP Laboratories UK 2013 JN-UG-3081 v1.4

 Jennic Encryption Tool (JET)
User Guide
3. Creating an Application Image

This chapter describes how to use JET in the modes introduced in Section 1.2:

 Binary Encryption mode - see Section 3.1

 Serialisation Data mode - see Section 3.2

 Combine mode - see Section 3.3

 Combined Encryption mode - see Section 3.4

 OTA Merge mode - see Section 3.5

Further options that are required for OTA Upgrade are presented in Section 3.6.

To use the tool, first launch a command-line window on your PC.

Note 1: JET can be run from any directory. The example
commands in this chapter assume that all input files and
the JET.exe file are located in the same directory.

Note 2: For command-line help when using the tool,
enter JET.exe -h at the command prompt.

Note 3: When creating an encrypted image for the
JN5148-Z01 device, the initialisation vector used for the
encryption must be specified using the option
-i IVECTOR (note that the 8 least significant
hexadecimal digits of the IVECTOR value must be
zero).

Note 4: In the case of the JN516x device, encryption of
the device’s own application binary is not necessary.
Encryption is only required for OTA upgrade images, as
they will be stored in external Flash memory.
JN-UG-3081 v1.4 © NXP Laboratories UK 2013 25

Chapter 3
Creating an Application Image

3.1 Using Binary Encryption Mode

In Binary Encryption mode (bin), JET takes an application binary file as input and
produces an encrypted binary file as output (see Section 1.2.1).

The tool is run in this mode by entering the following on the command line:

where:

 -m bin is the desired mode of JET: Binary Encryption mode

 -v <device type> is the device type:

 ‘3’ - JN5148-Z01

 ‘4’ - JN516x

 -f <input filename>.bin is the name of input binary file (generated using
the JN51xx SDK Toolchain) which is to be encrypted

 -e <output filename>.bin is the name of the encrypted output file to be
produced

 -k <encryption key> is the encryption key to be used. This key comprises
four 32-bit words and must be specified as a hexadecimal number in Little
Endian format (for an example, see below). You can prefix this number with '0x'
to indicate a hex value, if you wish

 -i <ivector> is the initialisation vector for encryption which must be
specified for the JN5148-Z01 and JN516x devices (note that the 8 least
significant hexadecimal digits of this value must be zero)

If the encrypted binary file is to be used as an OTA Upgrade image (for example, an
upgrade image for an OTA Upgrade cluster client) then further options must be added
to the JET.exe command. These options are described in Section 3.6.

Example Command

The following example illustrates the above command for Binary Encryption mode:

JET.exe -m bin -v 4 -f input.bin -e output.bin
-k 12345678abcdef12aaaaaaaabbbbbbbb
-i 00000010111213141516171800000000

JET.exe -m bin -v <device type> -f <input filename>.bin
-e <output filename>.bin -k <encryption key> -i <ivector>

Note: Since the encryption key must be specified in
Little Endian format, ‘12345678’ represents the least
significant word of the 4-word key in the example.
26 © NXP Laboratories UK 2013 JN-UG-3081 v1.4

 Jennic Encryption Tool (JET)
User Guide
3.2 Using Serialisation Data Encryption Mode
(JN514x only)

In Serialisation Data Encryption mode (sde), JET takes as inputs an unencrypted
binary file, a configuration file containing the serialisation data and an encryption key.
JET produces an encrypted licence file as its output (see Section 1.2.4), which
contains the encrypted serialisation data - its format is detailed in Appendix A.

The tool is run in this mode by entering the following on the command line:

where:

 -m sde is the desired mode of JET: Serialisation Data Encryption mode

 -v <device type> is the device type:

 ‘3’ - JN5148-Z01

 -f <application filename>.bin is the name of the input application
binary file (generated using the JN5148 SDK toolchain)

 -x <config filename>.txt is the name of the input configuration file
which contains the serialisation data

 -e <output filename>.txt is the name of the output licence file

 -k <encryption key> is the encryption key to be used. This key comprises
four 32-bit words and must be specified as a hexadecimal number in Little
Endian format (see Note in Section 3.1). You can prefix this number with '0x' to
indicate a hex value, if you wish

 -i <ivector> is the initialisation vector for encryption which must be
specified for the JN5148-Z01 (note that the 8 least significant hexadecimal
digits of this value must be zero)

If the encrypted licence file is to be used for OTA Upgrade then further options must
be added to the JET.exe command. These options are described in Section 3.6.

Example Command

The following example illustrates the above command for Serialisation Data
Encryption mode:

JET.exe -m sde -v 3 -f app1.bin -x config1.txt -e licence.txt
-k 12345678abcdef12aaaaaaaabbbbbbbb
-i 00000010111213141516171800000000

Refer to the Note in Section 3.1 about the format of the encryption key.

JET.exe -m sde -v <device type> -f <application filename>.bin
-x <config filename>.txt -e <output filename>.txt
-k <encryption key> -i <ivector>
JN-UG-3081 v1.4 © NXP Laboratories UK 2013 27

Chapter 3
Creating an Application Image

3.3 Using Combine Mode

In Combine mode (combine), JET allows an unencrypted application binary file and
a configuration file containing serialisation data to be combined into a single
unencrypted binary file. An option exists in this mode which allows the output file to be
encrypted in the future.

The tool is run in this mode by entering the following on the command line:

where:

 -m combine is the desired mode of JET: Combine mode

 -v <device type> is the device type:

 ‘3’ - JN5148-Z01

 ‘4’ - JN516x

 -f <application filename>.bin is the name of input application binary
file, which is unencrypted (generated using the JN51xx SDK Toolchain)

 -x <config filename>.txt is the name of the input configuration file
which contains the serialisation data

 -a <padding> indicates whether the data is to be padded to align it to a 16-
byte boundary, so that it can be encrypted in the future: ‘1’ padded, ‘0’ not
padded

 -g <Private Key Encrypt Option> specifies whether or not to encrypt
the private key: ‘1’ encrypted, ‘0’ not encrypted (JN516x only)

 -k <Encryption Key> key used for encrypting private key (JN516x only)

The tool produces an output binary file output<MAC address>.bin, where the
filename contains the MAC address of the target device for the image.

Example Command

The following example illustrates the above command for Combine mode:

JET.exe -m combine -f IPD_NODE_JN5168.bin -x config.txt -v 4
-g 1 -k 0x11111111222222223333333344444444

JET.exe -m combine -v <device type> -f <application filename>.bin
-x <config filename>.txt -a <padding> -g <private key encrypting
option> -k <encryption key>
28 © NXP Laboratories UK 2013 JN-UG-3081 v1.4

 Jennic Encryption Tool (JET)
User Guide
3.4 Using Combined Encryption Mode (JN514x only)

Combined Encryption mode (com) combines Binary Encryption mode and
Serialisation Data Encryption mode. Therefore, in Combined Encryption mode, JET
takes an application binary file and a configuration file as inputs, and produces an
encrypted binary file as output that includes both the application and the serialisation
data (see Section 1.2.4).

The tool is run in this mode by entering the following on the command line:

where:

 -m com is the desired mode of JET: Combined Encryption mode

 -v <device type> is the device type:

 ‘3’ - JN5148-Z01

 -f <application filename>.bin is the name of input application binary
file (generated using the JN5148 SDK toolchain) which is to be encrypted

 -x <config filename>.txt is the name of the input configuration file
which contains the serialisation data

 -k <encryption key> is the encryption key to be used. This key comprises
four 32-bit words and must be specified as a hexadecimal number in Little
Endian format (see Note in Section 3.1). You can prefix this number with '0x' to
indicate a hex value, if you wish

 -i <ivector> is the initialisation vector for encryption which must be
specified for the JN5148-Z01 (note that the 8 least significant hexadecimal
digits of this value must be zero)

If the encrypted binary file is to be used for OTA Upgrade (for example, an upgrade
image for an OTA Upgrade cluster client) then further options must be added to the
JET.exe command. These options are described in Section 3.6.

The tool produces an output binary file output<MAC address>.bin for each IEEE/
MAC address present in the MAC addresses part (mac.txt) of the serialisation data.

Example Command

The following example illustrates the above command for Combined Encryption mode:

JET.exe -m com -v 3 -f app2.bin -e config2.txt
-k 12345678abcdef12aaaaaaaabbbbbbbb
-i 00000010111213141516171800000000

Refer to the Note in Section 3.1 about the format of the encryption key.

JET.exe -m com -v <device type> -f <application filename>.bin
-x <config filename>.txt -k <encryption key> -i <ivector>
JN-UG-3081 v1.4 © NXP Laboratories UK 2013 29

Chapter 3
Creating an Application Image

3.5 Using OTA Merge Mode

OTA Merge mode (otamerge) allows the creation of a binary image for the ZigBee
OTA Upgrade cluster by merging two separate components into a single file (see
Section 1.2.5). The input files can be provided both encrypted or both unencrypted, in
which case the output file will be encrypted or unencrypted, respectively.

The tool is run in this mode by entering the following on the command line:

where:

 -m otamerge is the desired operational mode of JET: OTA Merge mode

 -v <device type> is the device type:

 ‘3’ - JN5148-Z01

 ‘4’ - JN516x

 -s <input filename1>.bin is the name of the first input binary file or the
initial OTA cluster server image

 -c <input filename2>.bin is the name of the second input binary file,
normally the cluster server application or client application

 -o <output filename>.bin can be optionally used to specify the name of
the output file to be produced (if this is not specified, the options -u, -t, -n
below will be used to generate the output filename)

 -i <ivector> is the initialisation vector for encryption which must be
specified for the JN5148-Z01 and JN516x (note that the 8 least significant
hexadecimal digits of this value must be zero)

 --sector_size=SECTOR_SIZE is the sector size (in bytes) to which the
client image must be aligned

 --image_signed updates the image size to accommodate the signature and
signature certificate fields (for image signing, must be used with the -x option)

 -x <config filename>.txt is the name of the input configuration file
which contains the signing data for use with the --image_signed option

 -p <Flash prog> indicates whether JET is to strip out the 4-byte version
number field at the start of an image for a JN5148-Z01/JN516x device - this
setting depends on the tool to be used to load the output image into Flash
memory:

 ‘0’ instructs JET to leave the field in the file and is for use with the JN51xx
Flash Programmer which strips out the field itself (default),

 ‘1’ instructs JET to strip out the field and is for use with programming tools
that do not themselves remove the field (e.g. AP-114)

JET.exe -m otamerge -v <device type> -s <input filename1>.bin
-c <input filename2>.bin -o <output filename>.bin -i <ivector>
--sector_size=SECTOR_SIZE --image_signed -x <config filename>.txt
-p <Flash prog> --embed_hdr --ota
30 © NXP Laboratories UK 2013 JN-UG-3081 v1.4

 Jennic Encryption Tool (JET)
User Guide
 --embed_hdr embeds the OTA header in the output file (this option needs to
be included for unencrypted images only - see below)

 --ota incorporates the OTA header at the beginning of the application binary
as well as the tag headers (tag id, e.g. 0x0000 and tag length). This option
should be used for generating an OTA upgrade binary

The options for generating the output filename are described below.

For all the application binaries which support the OTA Upgrade cluster, the OTA
header must be embedded in the actual image.

Output Filename

The output filename can be optionally specified as part of the above JET command
using the -o option. If this option is not specified, the OTA options -u, -t, -n
(described in Section 3.6) will be used to generate an output filename of the format:

UUUU-TTTT-NNNNNNNN-upgradeMe.zigbee

where:

 UUUU is the manufacturer ID specified using the -u option

 TTTT is the image type specified using the -t option

 NNNNNNNN is the file version specified using the -n option and has the format
indicated in Section 3.6

 Each of the above values is expressed in hexadecimal and in upper case

 The file extension of the generated output filename is .zigbee

 If any of the above three options is not specified, the default value for that
option will be used

For example, if the following command is entered

JET.exe -m otamerge -s app1.bin -c app2.bin -u 0x4A4E -t 0x5148
-n 0x15050126 --ota --embed_hdr

then the generated output filename will be:

4A4E-5148-15050126-upgradeMe.zigbee

Image Signing

The --image_signed option used alone will modify the output file size to include
space for the signing fields, but these fields will not contain any signing data. To
populate these fields, the -x option must be used to provide an input configuration file
containing the following data in the following order:

 Private key (associated with certificate)

 IEEE/MAC address of signer (provided in Little Endian format)

 Security certificate of signer

This configuration file is created as described in Section 2.3.

JET will produce two output files - one containing an unsigned image (contains space
for signing fields but no data) and one containing a signed image, where the filename
of the latter is prefixed with Signed_.
JN-UG-3081 v1.4 © NXP Laboratories UK 2013 31

Chapter 3
Creating an Application Image

For example, the command

JET -m otamerge --image_signed -x sign_config.txt --ota --embed_hdr
-c IPD_NODE_JN5148.bin -u 0x4A4E -t 0x5148 -n 0x15050126
-o output.bin

will result in the output files output.bin (unsigned) and Signed_output.bin (signed).

Example Commands

The examples below for JN516x and JN514x show a sequence of commands to
create encrypted binary images for a (Smart Energy) IPD and Metering Device, which
are acting as the OTA Upgrade cluster client and server respectively (and run on the
JN51xx device). The output binaries should be loaded into JN51xx Flash memory
using the JN51xx Flash Programmer (which automatically strips out the 4-byte version
number field at the start of the image).

JN516x

:::::: Server Preparation ::::::

REM add serial data to the METER binary

JET.exe -m combine -f METER_NODE_JN5168.bin -x configOTA_ESP.txt -
v 4 -g 1 -k 0x11111111222222223333333344444444

REM Create a Server binary file which will be used to program
internal flash

JET.exe -m otamerge --embed_hdr -c output0000000000000002.bin -o
Server.bin -v 4 -n 1

pause

:::::: Server Preparation - END ::::::

:::::: CLIENT SIDE ::::::

REM add serail data to the IPD binary

JET.exe -m combine -f IPD_NODE_JN5168.bin -x configOTA_IPD.txt -v 4
-g 1 -k 0x11111111222222223333333344444444

REM Create a client file which will be used to program internal flash

JET.exe -m otamerge --embed_hdr -c output0000000000000001.bin -o
Client.bin -v 4 -n 1

:::::: CLIENT SIDE End ::::::

:::::: Upgrade Image Preparation ::::::

REM Prepare a upgrade image with higher version number in the
embedded in it.

JET.exe -m otamerge --embed_hdr -c IPD_NODE_JN5168.bin -o
UpGradeImagewithOTAHeader.bin -v 4 -n 2

REM Encrypt the data fo the upgarde image

JET.exe -m bin -f UpGradeImagewithOTAHeader.bin -e
Enc_UpGradeImagewithOTAHeader.bin -k
32 © NXP Laboratories UK 2013 JN-UG-3081 v1.4

 Jennic Encryption Tool (JET)
User Guide
0x11111111222222223333333344444444 -i
00000000100000000000000000000000 -v 4

REM Put 0xFF at the location of serialisation data after encryption,
so that the original data can be copied from the exsisting image

JET.exe -m combine -f Enc_UpGradeImagewithOTAHeader.bin -x
configOTA6x_BLANK_IPD.txt -v 4

REM Create the upgrade image to merge with the encrpted server , let
the image have the version number

JET.exe -m otamerge --ota -c outputffffffffffffffff.bin -o
OTA_ENC_UpGradeImagewithOTAHeader.bin -v 4 -n 2

:::::: Upgrade Image Preparation -END ::::::

JN514x

:::::: Prepare Enc Client ::::::

REM add serial data to the IPD binary

JET.exe -m combine -f IPD_NODE_JN5148Z01.bin -x configIPD.txt -v 3

REM populate embedded OTA header for IPD running image

JET.exe -m otamerge --embed_hdr -c output0000000001000000.bin -o
Client_NXP.bin -n 1 -v 3

REM Encrypt Client Binary with key and IV

JET.exe -m bin -f Client_NXP.bin -e Enc_Only_Client_NXP.bin -k
01010101000000000000000000000000 -i
00000000000000000000000100000000 -v 3

:::::: Prepare Enc Client - END ::::::

:::::: Prepare Enc Server ::::::

REM add serial data to the METER binary

JET.exe -m combine -f METER_NODE_JN5148Z01.bin -x configESP.txt -v 3

REM populate embedded OTA header for Meter running image

JET.exe -m otamerge --embed_hdr -c output000000000AAAAAAA.bin -o
Server_NXP.bin -n 1 -v 3

REM Encrypt server binary with key and IV

JET.exe -m bin -f Server_NXP.bin -e Enc_Only_Server_NXP.bin -k
01010101000000000000000000000000 -i
00000000000000000000000100000000 -v 3

:::::: Prepare Enc Server - END ::::::

:::::: Prepare Encrypted IPD Upgrade Image ::::::

REM Creat a IPD client file version 2 as upgrade image
JN-UG-3081 v1.4 © NXP Laboratories UK 2013 33

Chapter 3
Creating an Application Image

JET.exe -m otamerge --embed_hdr -c IPD_NODE_JN5148Z01.bin -o
Upgrade_Client_NXP.bin -n 2 -v 3

REM Encrpt the SDK client image

JET.exe -m bin -f Upgrade_Client_NXP.bin -e
Enc_UpgradeImage_NXP.bin -k 01010101000000000000000000000000 -i
00000000000000000000000100000000 -v 3

REM add serial BLANK serilisation data to the upgrade binary

JET.exe -m combine -f Enc_UpgradeImage_NXP.bin -x config_BLANK.txt
-v 3

:::::: Prepare Encrypted Upgrade Image END ::::::

:::::: Merge Server and Upgrade Image ::::::

JET.exe -m otamerge -s Enc_Only_Server_NXP.bin -c
outputffffffffffffffff -o Enc_SERVER_NXP.bin --sector_size=196608 -
v 3

:::::: Merge Server and Upgrade Image - END ::::::

This example embeds the OTA header in a client image to be loaded into the Flash
memory of a JN5148-Z01 device using the AP-114 programmer (in this case, the
4-byte version number field at the start of the image must be stripped out by JET, by
specifying -p 1):

JET.exe -m otamerge --ota --embed_hdr
-c IPD_NODE_EVK_JN5148Z01_OTA_Hrd.bin
-o UpGradeImagewithOTAHeader.bin -v 3 -n 2 -p 1
34 © NXP Laboratories UK 2013 JN-UG-3081 v1.4

 Jennic Encryption Tool (JET)
User Guide
3.6 OTA Options

If a file to be encrypted using Binary Encryption mode (Section 3.1), Serialisation Data
Encryption mode (Section 3.2) or Combined Encryption mode (Section 3.4) is to be
used as an OTA Upgrade image (for example, an upgrade image for an OTA Upgrade
cluster client) then further options must be added to the JET.exe command. These
options relate to the contents of the OTA header and are as follows:

 -u MANUFACTURER, --manufacturer=MANUFACTURER is the
manufacturer code (default: 0x4A4E)

 -t IMAGE_TYPE, --image_type=IMAGE_TYPE is the OTA header image
type (default: 0x5148)

 -r HEADER_VERSION, --Header_Version=HEADER_VERSION is the OTA
header version (default: 0x0100)

 -n FILE_VERSION, --File_Version=FILE_VERSION is the OTA file
version - for format, see below (default: 0x1)

 -z STACK_VERSION, --Stack_Version=STACK_VERSION is the OTA
stack version (default: 0x002)

 -d MAC, --destination=MAC is the IEEE/MAC address of the destination
node

 --security=VERSION is the security credential version

 --hardware=MIN MAX is the hardware minimum and maximum versions

 --ota puts the OTA header at the start of the image in any of the encryption
modes. The OTA header is embedded inside the image before encrypting the
image (default: false)

File Version Format

The OTA file version, specified using the -n option, has the format illustrated in the
following examples:

 0x10053519 represents application release 1.0, build 05, with stack release 3.5
b19

 0x10103519 represents application release 1.0, build 10, with stack release 3.5
b19

 0x10103701 represents application release 1.0, build 10, with stack release 3.7
b01
JN-UG-3081 v1.4 © NXP Laboratories UK 2013 35

Chapter 3
Creating an Application Image

36 © NXP Laboratories UK 2013 JN-UG-3081 v1.4

 Jennic Encryption Tool (JET)
User Guide
4. Loading an Application Image

This chapter describes how to load a binary image, prepared using JET, into the Flash
memory associated with of a JN51xx device.

4.1 Flash Programming Tools/Devices

The Flash memory connected to a JN51xx device is normally programmed using the
JN51xx Flash Programmer software tool, which is available in the JN51xx SDK
Toolchain and described in the JN51xx Flash Programmer User Guide (JN-UG-3007).

In order to overcome the above limitations with the JN51xx Flash Programmer, NXP
recommend the programming of Flash devices using a third-party Flash programmer
such as the Atomic Programming AP-114 device, which can be ordered from
www.atomicprogramming.com. This allows the Flash device to be programmed
directly via the SPI interface of the JN51xx device.

The remainder of this chapter describes loading a binary file into Flash memory using
the Atomic Programming AP-114 device. Use of this device involves connecting the
device to both a source PC and the target Flash memory device. Software for the
AP-114 must be installed on the PC - the Programming Centre (ApPC) software and
the necessary device drivers. Installation instructions for this software are provided in
Appendix C.

Note: PCB design should accommodate access to the
SPI bus. SPI programming has the added advantage of
higher baud-rates. Another advantage of using a third-
party SPI Flash programmer is that the Flash devices
can be programmed prior to PCB assembly.

Note: The Atomic Programmer currently supports
JN514x devices only.
JN-UG-3081 v1.4 © NXP Laboratories UK 2013 37

Chapter 4
Loading an Application Image

4.2 Programming the Flash Device

This section describes how to use the Atomic Programming AP-114 device (see
Section 4.1) to load a binary file into the Flash memory associated with a JN5148
device. The Flash programming instructions assume the following pre-requisites:

 The Atomic Programming ApPC software and device drivers have been
installed on the PC - installation instructions are provided in Appendix D.1 and
Appendix D.2.

 The AP-114 device has been connected to the PC and to the target device - the
required connections to an JN5148 evaluation kit board are detailed in
Appendix D.3.

The Flash programming instructions are provided in the sub-sections below.

4.2.1 Setting Up the Serialisation Data

If programming an encrypted binary file, before starting the ApPC software on the PC,
you must point this software at the encrypted licence file containing the serialisation
data - this is a .txt file produced by JET in Data Serialisation mode (see Section 3.2).

To do this, edit the script file Ap_Jennic_Encrypted_File.ser in the directory
C:\Program Files\Atomic Programming\ApPC\Scripts by changing line 21 from

Const FILENAME = "c:\Programmer\output.txt"

to point to the relevant file.

4.2.2 Writing to the Flash Device

1. Ensure that the AP-114 device is connected to the PC and to the carrier board
of the JN5148 device (for details of the latter connection, see Appendix D.3).

2. Start the ApPC software on the PC (there should be a 'Programming Center'
icon on your desktop).

The ApPC main window will appear.

3. Select the correct Flash device (this will probably be a Numonix M25P10A or
M25P40) and select the package as ISP (this is because the target platform is
self-powered).

Note: Make sure that the Programming Center (ApPC)
software is version 1.3 or above. The latest version is
available directly from the Atomic Programming web site
(www.atomicprogramming.com).
38 © NXP Laboratories UK 2013 JN-UG-3081 v1.4

 Jennic Encryption Tool (JET)
User Guide
4. Enable the serial numbers as follows (and as indicated in the screenshot
below):

a) Click Settings and then, in the Settings window, select the Serial
Numbers tab.

b) Ensure that the Enable Serial Numbers checkbox is ticked, select the
option Run serial script before programming cycle from the drop-down
menu and then select Jennic Encrypted Files from the list.

c) Click OK.

5. Click File in the main window and then click Open. Use the Browse button to
select the binary file to be loaded, leaving the other options as shown in the
screenshot below.
JN-UG-3081 v1.4 © NXP Laboratories UK 2013 39

Chapter 4
Loading an Application Image

6. Click Open to load this data into the programmer tool.

Note that the data buffer can be viewed/edited using the Buffer window, if
required.

7. Follow the path Action > Program to display the following Programming
Options window.

8. Click Program to load the binary file into the target Flash device.

Note: In this application, the protection features in the
Flash device are not required and have been set to
'Block Protect : None' and 'SRWD : Disable'.

Note: When exiting the software, the above settings will
be saved.
40 © NXP Laboratories UK 2013 JN-UG-3081 v1.4

 Jennic Encryption Tool (JET)
User Guide
Appendices

A. Licence File Format (JN514x only)

An encrypted licence file is produced by JET when serialisation data is provided
containing a security certificate and keys (see Section 1.4). The encrypted licence file
will contain an entry for each device to be programmed with the application.

Each entry is on a new line and the file format is comma-separated, with each line
containing multiple hexadecimal fields, as illustrated below:

<used>,<addr1>,<len1>,<data1>,<addr2>,<len2>,<data2>,...
 ...<addrn>,<lenn>,<datan>

JET writes 0x0 to the <used> field. The Flash programmer can update this field when
it writes the record to the Flash memory of a device.

The remainder of the line comprises a set of records, where each record contains:

 Flash memory address where the record is to be written

 Length of the record (number of bytes)

 Data (in bytes)

The data is listed with the first byte written to the specified address, the second byte
to the next address (address+1), etc.

An encrypted licence file for the normal bootloader is illustrated below:

0,0030,0020,f1842bb387c725cc9c9cda787fa…,0080,0050,95c3ff22d142…
0,0030,0020,f1842bb38c6d8f629c9cda787fa…,0080,0050,94c5b7b5571…
JN-UG-3081 v1.4 © NXP Laboratories UK 2013 41

Appendices
B. Use Cases

This appendix details the commands for nine use cases of JET. Use cases 1-5 are
introduced and illustrated in Section 1.3.

Note that the following abbreviations are used:

 EncKey – Encryption Key

 SData or SD – Serialisation Data

 App1 - Application image 1

 App2 - Application image 2

B.1 Use Case 1: Single App with SD - Unencrypted

Combine SD with App1 to produce output<MAC addr>.bin:

JET.exe -m combine -v 3 -f App1.bin -x App1_config.txt

B.2 Use Case 2: Single App with Blank SD - Encrypted

Encrypt the application binary:

JET.exe -m bin -v 3 -f App2.bin -e EncApp2.bin
-k 11223344556677880102030405060708
-i 01020304050607080102030405060708

B.3 Use Case 4: Single App with SD - Encrypted

Generate encrypted SD:

JET.exe -m sde -v 3 -f App1.bin -x sde_config.txt -e licence.txt
-k 11223344556677880102030405060708
-i 01020304050607080102030405060708

Generate encrypted App1 binary:

JET.exe -m bin -v 3 -f App1.bin -e EncApp1.bin
-k 11223344556677880102030405060708
-i 01020304050607080102030405060708
42 © NXP Laboratories UK 2013 JN-UG-3081 v1.4

 Jennic Encryption Tool (JET)
User Guide
B.4 Use Case 5: Multiple Apps with SD - Encrypted

Generate encrypted SD as licence file:

JET.exe -m sde -v 3 -f App1.bin -x sde_config.txt -e lisence.txt
-k 11223344556677880102030405060708
-i 01020304050607080102030405060708

Generate encrypted App1 binary:

JET.exe -m bin -v 3 -f App1.bin -e EncApp1.bin
-k 11223344556677880102030405060708
-i 01020304050607080102030405060708

Generate encrypted App2 binary:

JET.exe -m bin -v 3 -f App2.bin -e EncApp2.bin
-k 11223344556677880102030405060708
-i 01020304050607080102030405060708

B.5 Use Cases 6-9: Adding OTA Header to an App Binary

This section provides different use cases of adding an OTA header to a ZigBee PRO
application binary file.

Use Case 6: Adding OTA header and specifying output binary filename

JET.exe -m otamerge -v 3 --ota --embed_hdr -u 0x4A4E -t 0x5148
-n 0x10053519 -c EncApp1.bin -o BinwithOTAHeader.bin

Use Case 7: Adding OTA header and not specifying output binary filename

JET.exe -m otamerge -v 3 --ota --embed_hdr -u 0x4A4E -t 0x5148
-n 0x10053520 -c EncApp1.bin

Use Case 8: Adding OTA header and updating file size only (without signature data)

JET.exe -m otamerge -v 3 --ota --embed_hdr --image_signed -u 0x4A4E
-t 0x5148 -n 0x10053521 -c EncApp1.bin
-o OTASignImageSizeUpdated.bin

Use Case 9: Adding OTA header and signature data

JET.exe -m otamerge -v 3 --ota --embed_hdr -u 0x4A4E -t 0x5148
-n 0x10053522 --image_signed -x sign_config.txt -c EncApp1.bin
JN-UG-3081 v1.4 © NXP Laboratories UK 2013 43

Appendices
C. Creating a NULL OTA Image

This section details how to create a NULL upgrade image for ZigBee Over-The-Air
(OTA) certification. A NULL upgrade image is a valid OTA file that has an image body
without any real upgrade data inside. NULL images are small in size and are therefore
useful for test purposes, since small files do not take much time to download. During
testing, target devices may be required to:

 download NULL files without acting on the downloaded file

 ignore the image data in a NULL file but act on the OTA header accordingly

After the successful download of a NULL file, the target device must send an Upgrade
End Request command back to the source device. The status value of the command
may be either SUCCESS or INVALID_IMAGE.

Below are examples of unsigned and signed NULL images which contain OTA
headers but no valid image data.

Sample NULL OTA Image (unsigned):

1E F1 EE 0B 00 01 38 00 00 00 4E 4A 48 51 03 00 00 00 02 00 00 00

00 00

00 00 00 00 00 00 00 00 3E 00 00 00 00 00 00 00 00 00

Sample NULL OTA Image (signed):

1E F1 EE 0B 00 01 38 00 00 00 4E 4A 48 51 03 00 00 00 02 00 00 00

00 00

00 00 00 00 00 00 00 00 AC 00 00 00 00 00 00 00 00 00

The values in bold type in the examples above are described below (note that the
fields are in Little Endian format):

 Manufacturer code - 4A4E

 Image type - 5148

 File version - 00000003

The above examples of unsigned and signed NULL images are used in the sub-
sections below, which describe how to create a NULL image.

C.1 Creating an Unsigned NULL Image

To create an unsigned NULL image, follow the steps below:

1. Create a text file, called NullImage.bin, using the first example above.

2. Modify the manufacture code, image type and file version, as required.

3. NullImage.bin is then the required NULL image upgrade file.
44 © NXP Laboratories UK 2013 JN-UG-3081 v1.4

 Jennic Encryption Tool (JET)
User Guide
C.2 Creating a Signed NULL Image

To create a signed NULL image, follow the steps below:

1. Create a text file, called NullImage.bin, using the second example above.

2. Modify the manufacture code, image type and file version, as required. Save
the NullImage.bin file in the directory where JET is installed.

3. Run JET using the following command options:

JET.exe -m otamerge -v 3 --image_signed -x configSigner.txt -c
NullImage.bin -o UpgradeImage.bin

This merges the supplied NullImage.bin file with the configSigner.txt file,
which is present in the JET installation directory, and creates an output file
UpgradeImage.bin for device type 3 (JN5148-Z01).

4. Signed_UpgradeImage.bin is then the required signed NULL image upgrade
file.
JN-UG-3081 v1.4 © NXP Laboratories UK 2013 45

Appendices
D. AP-114 Installation

The Atomic Programming AP-114 device is an example third-party Flash programmer
that can be used here to load encrypted applications and serialisation data into the
Flash memory of devices in a production environment.

The installation of the AP-114 programmer is in three parts:

 First the Atomic Programming PC software (ApPC) must be installed, as
described in Appendix D.1

 Then the necessary device drivers for the AP-114 must be installed, as
described in Appendix D.2

 When required, the AP-114 can be connected to the device to be programmed
as described in Appendix D.3

D.1 Installing the ApPC Software

To install the ‘Programming Center’ (ApPC) software for the AP-114 device:

1. Insert the Atomic Programming CD into the CD-ROM drive of your PC.

Your web browser should start automatically. If the 'Welcome' HTML file does
not load, double-click on welcome.htm in the directory window for your
CD-ROM drive.

2. Browse to the Software page, select the ApPC link and select the RUN option.

3. Uncheck any components that you do not want to install (although it is
recommended that all components are installed).

4. Read the License Agreement carefully and select I Agree to continue the
installation.

The Microsoft .NET framework is automatically installed, if required, in addition
to the selected components.

5. At the end of the installation, close the Setup dialogue box. There is no need
to reboot your PC, but ensure that the CD is NOT removed (as it is needed for
the next stage of installation, described in Appendix D.2).

Note: If you encounter any installation problems, before
contacting Atomic Programming or your local sales
office, please consult the manual and troubleshooting
guide on the AP-114 installation CD.

For latest software updates, check:
www.atomicprogramming.com

For support, help and advice, visit:
www.deviceprogrammers.net/forum
46 © NXP Laboratories UK 2013 JN-UG-3081 v1.4

 Jennic Encryption Tool (JET)
User Guide
D.2 Installing the Device Drivers

To install the device drivers for the AP-114 device:

1. Connect the supplied USB cable to the back of the AP-114 device.

2. Connect the other end of the USB cable to a USB port on your PC. Windows
should detect the programmer and launch the Windows Found New
Hardware Wizard.

The Hardware Wizard helps to install the USB Control Port drivers for the
programmer.

3. When asked if Windows can connect to Windows Update to search for
software, select No, not this time.

4. Now select Install from a list of specified locations.

5. Browse to the Driver folder on the CD and click Next.

After the USB Control Port drivers have been installed, the wizard will launch
again, this time to install the Device Programmer drivers.

6. Follow Steps 2-5 again to install the Device Programmer drivers, installing
from the Driver folder on the CD.

7. Once the driver installation has completed, click Finish. There is no need to
restart the PC.

D.3 AP-114 to JN514x Connection

To connect the AP-114 programmer directly to your hardware platform, use the
10-way Port 2 connector on the AP-114 device, shown below.

If you are using the AP-114 device with a board from an NXP evaluation kit, such as
the JN5148-EK010 Evaluation Kit, then a cable is required with the mapping shown in
Table 2 below.

Note: Currently, the software has not passed Windows
Logo testing, but it is completely safe to continue with
the installation.

Figure 6: AP-114 Port 2 SPI Mode Connector

2 (nRESET)

4 (Vref)

6 (-)

8 (-)

10 (GND)

1 (SCK)

3 (MISO)

5 (SS)

7 (-)

9 (MOSI)
JN-UG-3081 v1.4 © NXP Laboratories UK 2013 47

Appendices
Signal
AP-114 Port

10-Way Header
NXP 40-Way

Expansion Header

SCK 1 22

MISO 3 23

MOSI 9 24

SS 5 25

nRESET 2 27

Vcc (Vref) 4 39

GND 10 40

Table 2: Cable Mapping for NXP Board
48 © NXP Laboratories UK 2013 JN-UG-3081 v1.4

 Jennic Encryption Tool (JET)
User Guide
Revision History

Version Date Comments

1.0 19-Apr-2011 First release

1.1 23-May-2012 Combine mode and use cases added, as well as other updates and
corrections

1.2 3-Sept-2012 OTA merge -p option added to specify Flash programming tool

1.3 15-Jan-2013 Updated for the JN516x chip family

1.4 18-Apr-2013 Improved appendix on creating a NULL OTA upgrade image
JN-UG-3081 v1.4 © NXP Laboratories UK 2013 49

Jennic Encryption Tool (JET)
User Guide

Important Notice

Limited warranty and liability - Information in this document is believed to be accurate and reliable. However, NXP
Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or
completeness of such information and shall have no liability for the consequences of use of such information. NXP
Semiconductors takes no responsibility for the content in this document if provided by an information source outside
of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages
(including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or
replacement of any products or rework charges) whether or not such damages are based on tort (including
negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate
and cumulative liability towards customer for the products described herein shall be limited in accordance with the
Terms and conditions of commercial sale of NXP Semiconductors.

Right to make changes - NXP Semiconductors reserves the right to make changes to information published in this
document, including without limitation specifications and product descriptions, at any time and without notice. This
document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use - NXP Semiconductors products are not designed, authorized or warranted to be suitable for use
in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an
NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or
environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP
Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the
customer's own risk.

Applications - Applications that are described herein for any of these products are for illustrative purposes only. NXP
Semiconductors makes no representation or warranty that such applications will be suitable for the specified use
without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors
products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product
design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit
for the customer's applications and products planned, as well as for the planned application and use of customer's
third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on
any weakness or default in the customer's applications or products, or the application or use by customer's third party
customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products
using NXP Semiconductors products in order to avoid a default of the applications and the products or of the
application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Export control - This document as well as the item(s) described herein may be subject to export control regulations.
Export might require a prior authorization from competent authorities.

NXP Laboratories UK Ltd
(Formerly Jennic Ltd)

Furnival Street
Sheffield
S1 4QT

United Kingdom

Tel: +44 (0)114 281 2655
Fax: +44 (0)114 281 2951

For the contact details of your local NXP office or distributor, refer to:

www.nxp.com/jennic
50 © NXP Laboratories UK 2013 JN-UG-3081 v1.4

	Contents
	About this Manual
	Organisation
	Conventions
	Acronyms and Abbreviations
	Related Documents
	Trademarks

	1. An Introduction to JET
	1.1 Purpose of JET
	1.2 Modes of Operation
	1.2.1 Binary Encryption Mode
	1.2.2 Serialisation Data Encryption Mode (JN514x only)
	1.2.3 Combine Mode
	1.2.4 Combined Encryption Mode (JN514x only)
	1.2.5 OTA Merge Mode

	1.3 Use Cases of JET
	1.3.1 Use Case 1: Single App with SD - Unencrypted
	1.3.2 Use Case 2: Single App with Blank SD - Encrypted
	1.3.3 Use Case 3: Multiple Apps with SD - Unencrypted
	1.3.4 Use Case 4: Single App with SD - Encrypted
	1.3.5 Use Case 5: Multiple Apps with SD - Encrypted

	1.4 Serialisation Data

	2. Preparing an Application for JET
	2.1 Adapting the Makefile
	2.2 Adapting the Application Code
	2.2.1 Serialisation Data
	2.2.2 Overlays with Multiple Images (ZigBee PRO, JN514x only)

	2.3 Setting Up Serialisation Data File

	3. Creating an Application Image
	3.1 Using Binary Encryption Mode
	3.2 Using Serialisation Data Encryption Mode (JN514x only)
	3.3 Using Combine Mode
	3.4 Using Combined Encryption Mode (JN514x only)
	3.5 Using OTA Merge Mode
	3.6 OTA Options

	4. Loading an Application Image
	4.1 Flash Programming Tools/Devices
	4.2 Programming the Flash Device
	4.2.1 Setting Up the Serialisation Data
	4.2.2 Writing to the Flash Device

	Appendices
	A. Licence File Format (JN514x only)
	B. Use Cases
	C. Creating a NULL OTA Image
	D. AP-114 Installation

